diff --git a/examples/i2c_slave/Makefile b/examples/i2c_slave/Makefile new file mode 100644 index 0000000000000000000000000000000000000000..49b91ce536597c14d0d8273010cba332c68baef1 --- /dev/null +++ b/examples/i2c_slave/Makefile @@ -0,0 +1,9 @@ +all : flash + +TARGET:=i2c_slave + +include ../../ch32v003fun/ch32v003fun.mk + +flash : cv_flash +clean : cv_clean + diff --git a/examples/i2c_slave/README.md b/examples/i2c_slave/README.md new file mode 100644 index 0000000000000000000000000000000000000000..cfdbd1b46fb2f58e9bea2c7b4ce8d2aa0e4ee367 --- /dev/null +++ b/examples/i2c_slave/README.md @@ -0,0 +1,9 @@ +# I2C peripheral in slave mode + +This library and example show how to use the I2C peripheral in slave mode. + +The library uses a one-byte address, allowing for up to 256 registers to be defined. + +The first byte written to the device within a transaction determines the offset for following reads and writes, emulating a simple EEPROM. + +The example will turn on a LED connected to PD0 when the LSB of register 0 is set to 1 and off when it's set to 0. diff --git a/examples/i2c_slave/i2c_slave.c b/examples/i2c_slave/i2c_slave.c new file mode 100644 index 0000000000000000000000000000000000000000..dbfaf80ec8448a67b4f5ab3e5ece38b1bb6c02d3 --- /dev/null +++ b/examples/i2c_slave/i2c_slave.c @@ -0,0 +1,30 @@ +#define SYSTEM_CORE_CLOCK 48000000 + +#include "ch32v003fun.h" +#include "i2c_slave.h" +#include <stdio.h> + +// The I2C slave library uses a one byte address so you can extend the size of this array up to 256 registers +// note that the register set is modified by interrupts, to prevent the compiler from accidently optimizing stuff +// away make sure to declare the register array volatile + +volatile uint8_t i2c_registers[32] = {0x00}; + +int main() { + SystemInit48HSI(); + SetupDebugPrintf(); + SetupI2CSlave(0x9, i2c_registers, sizeof(i2c_registers)); + + // Enable GPIOD and set pin 0 to output + RCC->APB2PCENR |= RCC_APB2Periph_GPIOD; + GPIOD->CFGLR &= ~(0xf<<(4*0)); + GPIOD->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_PP)<<(4*0); + + while (1) { + if (i2c_registers[0] & 1) { // Turn on LED (PD0) if bit 1 of register 0 is set + GPIOD-> BSHR |= 1 << 16; + } else { + GPIOD-> BSHR |= 1; + } + } +} diff --git a/examples/i2c_slave/i2c_slave.h b/examples/i2c_slave/i2c_slave.h new file mode 100644 index 0000000000000000000000000000000000000000..a488eaf8ea046d5ca80e395a2715650d9213dbeb --- /dev/null +++ b/examples/i2c_slave/i2c_slave.h @@ -0,0 +1,150 @@ +/* + * Single-File-Header for using the I2C peripheral in slave mode + * + * MIT License + * + * Copyright (c) 2023 Renze Nicolai + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#ifndef __I2C_SLAVE_H +#define __I2C_SLAVE_H + +#include <stdint.h> + +#define APB_CLOCK SYSTEM_CORE_CLOCK + +struct _i2c_slave_state { + uint8_t first_write; + uint8_t offset; + uint8_t position; + volatile uint8_t* volatile registers; + uint8_t size; +} i2c_slave_state; + +void SetupI2CSlave(uint8_t address, volatile uint8_t* registers, uint8_t size) { + i2c_slave_state.first_write = 1; + i2c_slave_state.offset = 0; + i2c_slave_state.position = 0; + i2c_slave_state.registers = registers; + i2c_slave_state.size = size; + + // Enable GPIOC and I2C + RCC->APB2PCENR |= RCC_APB2Periph_GPIOC; + RCC->APB1PCENR |= RCC_APB1Periph_I2C1; + + // PC1 is SDA, 10MHz Output, alt func, open-drain + GPIOC->CFGLR &= ~(0xf<<(4*1)); + GPIOC->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_OD_AF)<<(4*1); + + // PC2 is SCL, 10MHz Output, alt func, open-drain + GPIOC->CFGLR &= ~(0xf<<(4*2)); + GPIOC->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_OD_AF)<<(4*2); + + // Reset I2C1 to init all regs + RCC->APB1PRSTR |= RCC_APB1Periph_I2C1; + RCC->APB1PRSTR &= ~RCC_APB1Periph_I2C1; + + I2C1->CTLR1 |= I2C_CTLR1_SWRST; + I2C1->CTLR1 &= ~I2C_CTLR1_SWRST; + + // Set module clock frequency + uint32_t prerate = 2000000; // I2C Logic clock rate, must be higher than the bus clock rate + I2C1->CTLR2 |= (APB_CLOCK/prerate) & I2C_CTLR2_FREQ; + + // Enable interrupts + I2C1->CTLR2 |= I2C_CTLR2_ITBUFEN; + I2C1->CTLR2 |= I2C_CTLR2_ITEVTEN; // Event interrupt + I2C1->CTLR2 |= I2C_CTLR2_ITERREN; // Error interrupt + + NVIC_EnableIRQ(I2C1_EV_IRQn); // Event interrupt + NVIC_SetPriority(I2C1_EV_IRQn, 2 << 4); + NVIC_EnableIRQ(I2C1_ER_IRQn); // Error interrupt + + // Set clock configuration + uint32_t clockrate = 1000000; // I2C Bus clock rate, must be lower than the logic clock rate + I2C1->CKCFGR = ((APB_CLOCK/(3*clockrate))&I2C_CKCFGR_CCR) | I2C_CKCFGR_FS; // Fast mode 33% duty cycle + //I2C1->CKCFGR = ((APB_CLOCK/(25*clockrate))&I2C_CKCFGR_CCR) | I2C_CKCFGR_DUTY | I2C_CKCFGR_FS; // Fast mode 36% duty cycle + //I2C1->CKCFGR = (APB_CLOCK/(2*clockrate))&I2C_CKCFGR_CCR; // Standard mode good to 100kHz + + // Set I2C address + I2C1->OADDR1 = address << 1; + + // Enable I2C + I2C1->CTLR1 |= I2C_CTLR1_PE; + + // Acknowledge the first address match event when it happens + I2C1->CTLR1 |= I2C_CTLR1_ACK; +} + +void I2C1_EV_IRQHandler(void) __attribute__((interrupt)); +void I2C1_EV_IRQHandler(void) { + uint16_t STAR1, STAR2 __attribute__((unused)); + STAR1 = I2C1->STAR1; + STAR2 = I2C1->STAR2; + + I2C1->CTLR1 |= I2C_CTLR1_ACK; + + if (STAR1 & I2C_STAR1_ADDR) { // Start event + i2c_slave_state.first_write = 1; // Next write will be the offset + i2c_slave_state.position = i2c_slave_state.offset; // Reset position + } + + if (STAR1 & I2C_STAR1_RXNE) { // Write event + if (i2c_slave_state.first_write) { // First byte written, set the offset + i2c_slave_state.offset = I2C1->DATAR; + i2c_slave_state.position = i2c_slave_state.offset; + i2c_slave_state.first_write = 0; + } else { // Normal register write + if (i2c_slave_state.position < i2c_slave_state.size) { + i2c_slave_state.registers[i2c_slave_state.position] = I2C1->DATAR; + i2c_slave_state.position++; + } + } + } + + if (STAR1 & I2C_STAR1_TXE) { // Read event + if (i2c_slave_state.position < i2c_slave_state.size) { + I2C1->DATAR = i2c_slave_state.registers[i2c_slave_state.position]; + i2c_slave_state.position++; + } else { + I2C1->DATAR = 0x00; + } + } +} + +void I2C1_ER_IRQHandler(void) __attribute__((interrupt)); +void I2C1_ER_IRQHandler(void) { + uint16_t STAR1 = I2C1->STAR1; + + if (STAR1 & I2C_STAR1_BERR) { // Bus error + I2C1->STAR1 &= ~(I2C_STAR1_BERR); // Clear error + } + + if (STAR1 & I2C_STAR1_ARLO) { // Arbitration lost error + I2C1->STAR1 &= ~(I2C_STAR1_ARLO); // Clear error + } + + if (STAR1 & I2C_STAR1_AF) { // Acknowledge failure + I2C1->STAR1 &= ~(I2C_STAR1_AF); // Clear error + } +} + +#endif