Skip to content
Snippets Groups Projects
Unverified Commit 0dd6c365 authored by CNLohr's avatar CNLohr Committed by GitHub
Browse files

Merge pull request #126 from renzenicolai/renze/i2c-slave

Add I2C slave library & example
parents d283dd95 800f9d69
No related branches found
No related tags found
No related merge requests found
all : flash
TARGET:=i2c_slave_example
include ../../ch32v003fun/ch32v003fun.mk
flash : cv_flash
clean : cv_clean
# I2C peripheral in slave mode
This library and example show how to use the I2C peripheral in slave mode.
The library uses a one-byte address, allowing for up to 256 registers to be defined.
The first byte written to the device within a transaction determines the offset for following reads and writes, emulating a simple EEPROM.
The example will turn on a LED connected to PD0 when the LSB of register 0 is set to 1 and off when it's set to 0.
/*
* Single-File-Header for using the I2C peripheral in slave mode
*
* MIT License
*
* Copyright (c) 2023 Renze Nicolai
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __I2C_SLAVE_H
#define __I2C_SLAVE_H
#include <stdint.h>
#define APB_CLOCK SYSTEM_CORE_CLOCK
struct _i2c_slave_state {
uint8_t first_write;
uint8_t offset;
uint8_t position;
volatile uint8_t* volatile registers;
uint8_t size;
} i2c_slave_state;
void SetupI2CSlave(uint8_t address, volatile uint8_t* registers, uint8_t size) {
i2c_slave_state.first_write = 1;
i2c_slave_state.offset = 0;
i2c_slave_state.position = 0;
i2c_slave_state.registers = registers;
i2c_slave_state.size = size;
// Enable GPIOC and I2C
RCC->APB2PCENR |= RCC_APB2Periph_GPIOC;
RCC->APB1PCENR |= RCC_APB1Periph_I2C1;
// PC1 is SDA, 10MHz Output, alt func, open-drain
GPIOC->CFGLR &= ~(0xf<<(4*1));
GPIOC->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_OD_AF)<<(4*1);
// PC2 is SCL, 10MHz Output, alt func, open-drain
GPIOC->CFGLR &= ~(0xf<<(4*2));
GPIOC->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_OD_AF)<<(4*2);
// Reset I2C1 to init all regs
RCC->APB1PRSTR |= RCC_APB1Periph_I2C1;
RCC->APB1PRSTR &= ~RCC_APB1Periph_I2C1;
I2C1->CTLR1 |= I2C_CTLR1_SWRST;
I2C1->CTLR1 &= ~I2C_CTLR1_SWRST;
// Set module clock frequency
uint32_t prerate = 2000000; // I2C Logic clock rate, must be higher than the bus clock rate
I2C1->CTLR2 |= (APB_CLOCK/prerate) & I2C_CTLR2_FREQ;
// Enable interrupts
I2C1->CTLR2 |= I2C_CTLR2_ITBUFEN;
I2C1->CTLR2 |= I2C_CTLR2_ITEVTEN; // Event interrupt
I2C1->CTLR2 |= I2C_CTLR2_ITERREN; // Error interrupt
NVIC_EnableIRQ(I2C1_EV_IRQn); // Event interrupt
NVIC_SetPriority(I2C1_EV_IRQn, 2 << 4);
NVIC_EnableIRQ(I2C1_ER_IRQn); // Error interrupt
// Set clock configuration
uint32_t clockrate = 1000000; // I2C Bus clock rate, must be lower than the logic clock rate
I2C1->CKCFGR = ((APB_CLOCK/(3*clockrate))&I2C_CKCFGR_CCR) | I2C_CKCFGR_FS; // Fast mode 33% duty cycle
//I2C1->CKCFGR = ((APB_CLOCK/(25*clockrate))&I2C_CKCFGR_CCR) | I2C_CKCFGR_DUTY | I2C_CKCFGR_FS; // Fast mode 36% duty cycle
//I2C1->CKCFGR = (APB_CLOCK/(2*clockrate))&I2C_CKCFGR_CCR; // Standard mode good to 100kHz
// Set I2C address
I2C1->OADDR1 = address << 1;
// Enable I2C
I2C1->CTLR1 |= I2C_CTLR1_PE;
// Acknowledge the first address match event when it happens
I2C1->CTLR1 |= I2C_CTLR1_ACK;
}
void I2C1_EV_IRQHandler(void) __attribute__((interrupt));
void I2C1_EV_IRQHandler(void) {
uint16_t STAR1, STAR2 __attribute__((unused));
STAR1 = I2C1->STAR1;
STAR2 = I2C1->STAR2;
I2C1->CTLR1 |= I2C_CTLR1_ACK;
if (STAR1 & I2C_STAR1_ADDR) { // Start event
i2c_slave_state.first_write = 1; // Next write will be the offset
i2c_slave_state.position = i2c_slave_state.offset; // Reset position
}
if (STAR1 & I2C_STAR1_RXNE) { // Write event
if (i2c_slave_state.first_write) { // First byte written, set the offset
i2c_slave_state.offset = I2C1->DATAR;
i2c_slave_state.position = i2c_slave_state.offset;
i2c_slave_state.first_write = 0;
} else { // Normal register write
if (i2c_slave_state.position < i2c_slave_state.size) {
i2c_slave_state.registers[i2c_slave_state.position] = I2C1->DATAR;
i2c_slave_state.position++;
}
}
}
if (STAR1 & I2C_STAR1_TXE) { // Read event
if (i2c_slave_state.position < i2c_slave_state.size) {
I2C1->DATAR = i2c_slave_state.registers[i2c_slave_state.position];
i2c_slave_state.position++;
} else {
I2C1->DATAR = 0x00;
}
}
}
void I2C1_ER_IRQHandler(void) __attribute__((interrupt));
void I2C1_ER_IRQHandler(void) {
uint16_t STAR1 = I2C1->STAR1;
if (STAR1 & I2C_STAR1_BERR) { // Bus error
I2C1->STAR1 &= ~(I2C_STAR1_BERR); // Clear error
}
if (STAR1 & I2C_STAR1_ARLO) { // Arbitration lost error
I2C1->STAR1 &= ~(I2C_STAR1_ARLO); // Clear error
}
if (STAR1 & I2C_STAR1_AF) { // Acknowledge failure
I2C1->STAR1 &= ~(I2C_STAR1_AF); // Clear error
}
}
#endif
#define SYSTEM_CORE_CLOCK 48000000
#include "ch32v003fun.h"
#include "i2c_slave.h"
#include <stdio.h>
// The I2C slave library uses a one byte address so you can extend the size of this array up to 256 registers
// note that the register set is modified by interrupts, to prevent the compiler from accidently optimizing stuff
// away make sure to declare the register array volatile
volatile uint8_t i2c_registers[32] = {0x00};
int main() {
SystemInit48HSI();
SetupDebugPrintf();
SetupI2CSlave(0x9, i2c_registers, sizeof(i2c_registers));
// Enable GPIOD and set pin 0 to output
RCC->APB2PCENR |= RCC_APB2Periph_GPIOD;
GPIOD->CFGLR &= ~(0xf<<(4*0));
GPIOD->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_PP)<<(4*0);
while (1) {
if (i2c_registers[0] & 1) { // Turn on LED (PD0) if bit 1 of register 0 is set
GPIOD-> BSHR |= 1 << 16;
} else {
GPIOD-> BSHR |= 1;
}
}
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment