Skip to content
Snippets Groups Projects
Commit 3e2b808c authored by Renze Nicolai's avatar Renze Nicolai
Browse files

Add I2C slave library and example

parent 8f7ba482
No related branches found
No related tags found
No related merge requests found
all : flash
TARGET:=i2c_slave
include ../../ch32v003fun/ch32v003fun.mk
flash : cv_flash
clean : cv_clean
# I2C peripheral in slave mode
This library and example show how to use the I2C peripheral in slave mode.
The library uses a one-byte address, allowing for up to 256 registers to be defined.
The first byte written to the device within a transaction determines the offset for following reads and writes, emulating a simple EEPROM.
The example will turn on a LED connected to PD0 when the LSB of register 0 is set to 1 and off when it's set to 0.
#define SYSTEM_CORE_CLOCK 48000000
#include "ch32v003fun.h"
#include "i2c_slave.h"
#include <stdio.h>
// The I2C slave library uses a one byte address so you can extend the size of this array up to 256 registers
// note that the register set is modified by interrupts, to prevent the compiler from accidently optimizing stuff
// away make sure to declare the register array volatile
volatile uint8_t i2c_registers[32] = {0x00};
int main() {
SystemInit48HSI();
SetupDebugPrintf();
SetupI2CSlave(0x9, i2c_registers, sizeof(i2c_registers));
// Enable GPIOD and set pin 0 to output
RCC->APB2PCENR |= RCC_APB2Periph_GPIOD;
GPIOD->CFGLR &= ~(0xf<<(4*0));
GPIOD->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_PP)<<(4*0);
while (1) {
if (i2c_registers[0] & 1) { // Turn on LED (PD0) if bit 1 of register 0 is set
GPIOD-> BSHR |= 1 << 16;
} else {
GPIOD-> BSHR |= 1;
}
}
}
/*
* Single-File-Header for using the I2C peripheral in slave mode
*
* MIT License
*
* Copyright (c) 2023 Renze Nicolai
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __I2C_SLAVE_H
#define __I2C_SLAVE_H
#include <stdint.h>
#define APB_CLOCK SYSTEM_CORE_CLOCK
struct _i2c_slave_state {
uint8_t first_write;
uint8_t offset;
uint8_t position;
volatile uint8_t* volatile registers;
uint8_t size;
} i2c_slave_state;
void SetupI2CSlave(uint8_t address, volatile uint8_t* registers, uint8_t size) {
i2c_slave_state.first_write = 1;
i2c_slave_state.offset = 0;
i2c_slave_state.position = 0;
i2c_slave_state.registers = registers;
i2c_slave_state.size = size;
// Enable GPIOC and I2C
RCC->APB2PCENR |= RCC_APB2Periph_GPIOC;
RCC->APB1PCENR |= RCC_APB1Periph_I2C1;
// PC1 is SDA, 10MHz Output, alt func, open-drain
GPIOC->CFGLR &= ~(0xf<<(4*1));
GPIOC->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_OD_AF)<<(4*1);
// PC2 is SCL, 10MHz Output, alt func, open-drain
GPIOC->CFGLR &= ~(0xf<<(4*2));
GPIOC->CFGLR |= (GPIO_Speed_10MHz | GPIO_CNF_OUT_OD_AF)<<(4*2);
// Reset I2C1 to init all regs
RCC->APB1PRSTR |= RCC_APB1Periph_I2C1;
RCC->APB1PRSTR &= ~RCC_APB1Periph_I2C1;
I2C1->CTLR1 |= I2C_CTLR1_SWRST;
I2C1->CTLR1 &= ~I2C_CTLR1_SWRST;
// Set module clock frequency
uint32_t prerate = 2000000; // I2C Logic clock rate, must be higher than the bus clock rate
I2C1->CTLR2 |= (APB_CLOCK/prerate) & I2C_CTLR2_FREQ;
// Enable interrupts
I2C1->CTLR2 |= I2C_CTLR2_ITBUFEN;
I2C1->CTLR2 |= I2C_CTLR2_ITEVTEN; // Event interrupt
I2C1->CTLR2 |= I2C_CTLR2_ITERREN; // Error interrupt
NVIC_EnableIRQ(I2C1_EV_IRQn); // Event interrupt
NVIC_SetPriority(I2C1_EV_IRQn, 2 << 4);
NVIC_EnableIRQ(I2C1_ER_IRQn); // Error interrupt
// Set clock configuration
uint32_t clockrate = 1000000; // I2C Bus clock rate, must be lower than the logic clock rate
I2C1->CKCFGR = ((APB_CLOCK/(3*clockrate))&I2C_CKCFGR_CCR) | I2C_CKCFGR_FS; // Fast mode 33% duty cycle
//I2C1->CKCFGR = ((APB_CLOCK/(25*clockrate))&I2C_CKCFGR_CCR) | I2C_CKCFGR_DUTY | I2C_CKCFGR_FS; // Fast mode 36% duty cycle
//I2C1->CKCFGR = (APB_CLOCK/(2*clockrate))&I2C_CKCFGR_CCR; // Standard mode good to 100kHz
// Set I2C address
I2C1->OADDR1 = address << 1;
// Enable I2C
I2C1->CTLR1 |= I2C_CTLR1_PE;
// Acknowledge the first address match event when it happens
I2C1->CTLR1 |= I2C_CTLR1_ACK;
}
void I2C1_EV_IRQHandler(void) __attribute__((interrupt));
void I2C1_EV_IRQHandler(void) {
uint16_t STAR1, STAR2 __attribute__((unused));
STAR1 = I2C1->STAR1;
STAR2 = I2C1->STAR2;
I2C1->CTLR1 |= I2C_CTLR1_ACK;
if (STAR1 & I2C_STAR1_ADDR) { // Start event
i2c_slave_state.first_write = 1; // Next write will be the offset
i2c_slave_state.position = i2c_slave_state.offset; // Reset position
}
if (STAR1 & I2C_STAR1_RXNE) { // Write event
if (i2c_slave_state.first_write) { // First byte written, set the offset
i2c_slave_state.offset = I2C1->DATAR;
i2c_slave_state.position = i2c_slave_state.offset;
i2c_slave_state.first_write = 0;
} else { // Normal register write
if (i2c_slave_state.position < i2c_slave_state.size) {
i2c_slave_state.registers[i2c_slave_state.position] = I2C1->DATAR;
i2c_slave_state.position++;
}
}
}
if (STAR1 & I2C_STAR1_TXE) { // Read event
if (i2c_slave_state.position < i2c_slave_state.size) {
I2C1->DATAR = i2c_slave_state.registers[i2c_slave_state.position];
i2c_slave_state.position++;
} else {
I2C1->DATAR = 0x00;
}
}
}
void I2C1_ER_IRQHandler(void) __attribute__((interrupt));
void I2C1_ER_IRQHandler(void) {
uint16_t STAR1 = I2C1->STAR1;
if (STAR1 & I2C_STAR1_BERR) { // Bus error
I2C1->STAR1 &= ~(I2C_STAR1_BERR); // Clear error
}
if (STAR1 & I2C_STAR1_ARLO) { // Arbitration lost error
I2C1->STAR1 &= ~(I2C_STAR1_ARLO); // Clear error
}
if (STAR1 & I2C_STAR1_AF) { // Acknowledge failure
I2C1->STAR1 &= ~(I2C_STAR1_AF); // Clear error
}
}
#endif
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment