Newer
Older
RCSwitch - Arduino libary for remote control outlet switches

s.oezguer
committed
Contributors:
- Gordeev Andrey Vladimirovich / gordeev(at)openpyro(dot)com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
unsigned long RCSwitch::nReceivedValue = NULL;
unsigned int RCSwitch::nReceivedBitlength = 0;
unsigned int RCSwitch::nReceivedDelay = 0;
unsigned int RCSwitch::timings[RCSWITCH_MAX_CHANGES];
int RCSwitch::nReceiveTolerance = 60;
RCSwitch::RCSwitch() {
this->nReceiverInterrupt = -1;
this->nTransmitterPin = -1;

s.oezguer
committed
this->setRepeatTransmit(10);
/**
* Sets the protocol to send.
*/
void RCSwitch::setProtocol(int nProtocol) {
this->nProtocol = nProtocol;
if (nProtocol == 1){
this->setPulseLength(350);
}
else if (nProtocol == 2) {
this->setPulseLength(650);
}
}
/**
* Sets the protocol to send with pulse length in microseconds.
*/
void RCSwitch::setProtocol(int nProtocol, int nPulseLength) {
this->nProtocol = nProtocol;
if (nProtocol == 1){
this->setPulseLength(nPulseLength);
}
else if (nProtocol == 2) {
this->setPulseLength(nPulseLength);
}
}
/**
* Sets pulse length in microseconds
*/
void RCSwitch::setPulseLength(int nPulseLength) {
this->nPulseLength = nPulseLength;

s.oezguer
committed
/**
void RCSwitch::setRepeatTransmit(int nRepeatTransmit) {
this->nRepeatTransmit = nRepeatTransmit;

s.oezguer
committed
}
/**
* Set Receiving Tolerance
*/
void RCSwitch::setReceiveTolerance(int nPercent) {
RCSwitch::nReceiveTolerance = nPercent;
}
* @param nTransmitterPin Arduino Pin to which the sender is connected to
void RCSwitch::enableTransmit(int nTransmitterPin) {
this->nTransmitterPin = nTransmitterPin;
pinMode(this->nTransmitterPin, OUTPUT);
}
/**
* Disable transmissions
*/
void RCSwitch::disableTransmit() {
this->nTransmitterPin = -1;
/**
* Switch a remote switch on (Type C Intertechno)
*
* @param sFamily Familycode (a..f)
* @param nGroup Number of group (1..4)
* @param nDevice Number of device (1..4)
*/
void RCSwitch::switchOn(char sFamily, int nGroup, int nDevice) {
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, true) );
}
/**
* Switch a remote switch off (Type C Intertechno)
*
* @param sFamily Familycode (a..f)
* @param nGroup Number of group (1..4)
* @param nDevice Number of device (1..4)
*/
void RCSwitch::switchOff(char sFamily, int nGroup, int nDevice) {
this->sendTriState( this->getCodeWordC(sFamily, nGroup, nDevice, false) );
}
* Switch a remote switch on (Type B with two rotary/sliding switches)
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
*/
void RCSwitch::switchOn(int nAddressCode, int nChannelCode) {
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, true) );
* Switch a remote switch off (Type B with two rotary/sliding switches)
*
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
*/
void RCSwitch::switchOff(int nAddressCode, int nChannelCode) {
this->sendTriState( this->getCodeWordB(nAddressCode, nChannelCode, false) );
* Switch a remote switch on (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param nChannelCode Number of the switch itself (1..4)
*/
void RCSwitch::switchOn(char* sGroup, int nChannel) {
this->sendTriState( this->getCodeWordA(sGroup, nChannel, true) );
* Switch a remote switch off (Type A with 10 pole DIP switches)
*
* @param sGroup Code of the switch group (refers to DIP switches 1..5 where "1" = on and "0" = off, if all DIP switches are on it's "11111")
* @param nChannelCode Number of the switch itself (1..4)
*/
void RCSwitch::switchOff(char* sGroup, int nChannel) {
this->sendTriState( this->getCodeWordA(sGroup, nChannel, false) );
* Returns a char[13], representing the Code Word to be send.
* A Code Word consists of 9 address bits, 3 data bits and one sync bit but in our case only the first 8 address bits and the last 2 data bits were used.
* A Code Bit can have 4 different states: "F" (floating), "0" (low), "1" (high), "S" (synchronous bit)
*
* +-------------------------------+--------------------------------+-----------------------------------------+-----------------------------------------+----------------------+------------+
* | 4 bits address (switch group) | 4 bits address (switch number) | 1 bit address (not used, so never mind) | 1 bit address (not used, so never mind) | 2 data bits (on|off) | 1 sync bit |
* | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | 1=0FFF 2=F0FF 3=FF0F 4=FFF0 | F | F | on=FF off=F0 | S |
* +-------------------------------+--------------------------------+-----------------------------------------+-----------------------------------------+----------------------+------------+
* @param nAddressCode Number of the switch group (1..4)
* @param nChannelCode Number of the switch itself (1..4)
* @param bStatus Wether to switch on (true) or off (false)
char* RCSwitch::getCodeWordB(int nAddressCode, int nChannelCode, boolean bStatus) {
int nReturnPos = 0;
static char sReturn[13];
char* code[5] = { "FFFF", "0FFF", "F0FF", "FF0F", "FFF0" };
if (nAddressCode < 1 || nAddressCode > 4 || nChannelCode < 1 || nChannelCode > 4) {
return '\0';
}
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = code[nAddressCode][i];
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = code[nChannelCode][i];
}
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
if (bStatus) {
sReturn[nReturnPos++] = 'F';
} else {
sReturn[nReturnPos++] = '0';
}
sReturn[nReturnPos] = '\0';
return sReturn;
char* RCSwitch::getCodeWordA(char* sGroup, int nChannelCode, boolean bStatus) {
int nReturnPos = 0;
static char sReturn[13];
char* code[6] = { "FFFFF", "0FFFF", "F0FFF", "FF0FF", "FFF0F", "FFFF0" };
if (nChannelCode < 1 || nChannelCode > 5) {
return '\0';
}
for (int i = 0; i<5; i++) {
if (sGroup[i] == '0') {
sReturn[nReturnPos++] = 'F';
} else if (sGroup[i] == '1') {
sReturn[nReturnPos++] = '0';
for (int i = 0; i<5; i++) {
sReturn[nReturnPos++] = code[ nChannelCode ][i];
}
if (bStatus) {
sReturn[nReturnPos++] = '0';
sReturn[nReturnPos++] = 'F';
} else {
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = '0';
}
sReturn[nReturnPos] = '\0';
return sReturn;
/**
* Like getCodeWord (Type C = Intertechno)
*/
char* RCSwitch::getCodeWordC(char sFamily, int nGroup, int nDevice, boolean bStatus) {
static char sReturn[13];
int nReturnPos = 0;
if ( (byte)sFamily < 97 || (byte)sFamily > 112 || nGroup < 1 || nGroup > 4 || nDevice < 1 || nDevice > 4) {
return '\0';
char* sDeviceGroupCode = dec2binWzerofill( (nDevice-1) + (nGroup-1)*4, 4 );
char familycode[16][5] = { "0000", "F000", "0F00", "FF00", "00F0", "F0F0", "0FF0", "FFF0", "000F", "F00F", "0F0F", "FF0F", "00FF", "F0FF", "0FFF", "FFFF" };
for (int i = 0; i<4; i++) {
sReturn[nReturnPos++] = familycode[ (int)sFamily - 97 ][i];
}
sReturn[nReturnPos++] = (sDeviceGroupCode[3-i] == '1' ? 'F' : '0');
}
sReturn[nReturnPos++] = '0';
sReturn[nReturnPos++] = 'F';
sReturn[nReturnPos++] = 'F';
if (bStatus) {
sReturn[nReturnPos++] = 'F';
} else {
sReturn[nReturnPos++] = '0';
void RCSwitch::sendTriState(char* sCodeWord) {
for (int nRepeat=0; nRepeat<nRepeatTransmit; nRepeat++) {
int i = 0;
while (sCodeWord[i] != '\0') {
void RCSwitch::send(unsigned long Code, unsigned int length) {
this->send( this->dec2binWzerofill(Code, length) );
}
void RCSwitch::send(char* sCodeWord) {
for (int nRepeat=0; nRepeat<nRepeatTransmit; nRepeat++) {
int i = 0;
while (sCodeWord[i] != '\0') {
switch(sCodeWord[i]) {
case '0':
this->send0();
break;
case '1':
this->send1();
break;
}
i++;
}
this->sendSync();
}
}
void RCSwitch::transmit(int nHighPulses, int nLowPulses) {
if (this->nTransmitterPin != -1) {
if (this->nReceiverInterrupt != -1) {
this->disableReceive();
}
if (this->nProtocol == 1){
this->transmit(1,3);
}
else if (this->nProtocol == 2) {
this->transmit(1,2);
}
if (this->nProtocol == 1){
this->transmit(3,1);
}
else if (this->nProtocol == 2) {
this->transmit(2,1);
}
}
/**
* Sends a Tri-State "0" Bit
* _ _
* Waveform: | |___| |___
*/
void RCSwitch::sendT0() {
}
/**
* Sends a Tri-State "1" Bit
* ___ ___
* Waveform: | |_| |_
*/
void RCSwitch::sendT1() {
* Waveform: | |_______________________________
*/
void RCSwitch::sendSync() {
if (this->nProtocol == 1){
this->transmit(1,31);
}
else if (this->nProtocol == 2) {
this->transmit(1,10);
}
}
/**
* Enable receiving data
*/
this->enableReceive();
}
void RCSwitch::enableReceive() {
if (this->nReceiverInterrupt != -1) {
RCSwitch::nReceivedValue = NULL;
RCSwitch::nReceivedBitlength = NULL;
attachInterrupt(this->nReceiverInterrupt, handleInterrupt, CHANGE);
}
/**
* Disable receiving data
*/
void RCSwitch::disableReceive() {
detachInterrupt(this->nReceiverInterrupt);
this->nReceiverInterrupt = -1;
bool RCSwitch::available() {
return RCSwitch::nReceivedValue != NULL;
}
void RCSwitch::resetAvailable() {
RCSwitch::nReceivedValue = NULL;
}
unsigned long RCSwitch::getReceivedValue() {
return RCSwitch::nReceivedValue;
}
unsigned int RCSwitch::getReceivedBitlength() {
}
unsigned int RCSwitch::getReceivedDelay() {
return RCSwitch::nReceivedDelay;
}
unsigned int RCSwitch::getReceivedProtocol() {
return RCSwitch::nReceivedProtocol;
}
unsigned int* RCSwitch::getReceivedRawdata() {
return RCSwitch::timings;
}
bool RCSwitch::receiveProtocol1(unsigned int changeCount){
unsigned long delayTolerance = delay * RCSwitch::nReceiveTolerance * 0.01;
for (int i = 1; i<changeCount ; i=i+2) {
if (RCSwitch::timings[i] > delay-delayTolerance && RCSwitch::timings[i] < delay+delayTolerance && RCSwitch::timings[i+1] > delay*3-delayTolerance && RCSwitch::timings[i+1] < delay*3+delayTolerance) {
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
} else if (RCSwitch::timings[i] > delay*3-delayTolerance && RCSwitch::timings[i] < delay*3+delayTolerance && RCSwitch::timings[i+1] > delay-delayTolerance && RCSwitch::timings[i+1] < delay+delayTolerance) {
code+=1;
code = code << 1;
} else {
// Failed
i = changeCount;
code = 0;
}
}
code = code >> 1;
if (changeCount > 6) { // ignore < 4bit values as there are no devices sending 4bit values => noise
RCSwitch::nReceivedValue = code;
RCSwitch::nReceivedBitlength = changeCount / 2;
RCSwitch::nReceivedDelay = delay;
RCSwitch::nReceivedProtocol = 1;
}
if (code == 0){
return false;
}else if (code != 0){
return true;
}
}
bool RCSwitch::receiveProtocol2(unsigned int changeCount){
unsigned long code = 0;
unsigned long delay = RCSwitch::timings[0] / 10;
unsigned long delayTolerance = delay * RCSwitch::nReceiveTolerance * 0.01;
for (int i = 1; i<changeCount ; i=i+2) {
if (RCSwitch::timings[i] > delay-delayTolerance && RCSwitch::timings[i] < delay+delayTolerance && RCSwitch::timings[i+1] > delay*2-delayTolerance && RCSwitch::timings[i+1] < delay*2+delayTolerance) {
code = code << 1;
} else if (RCSwitch::timings[i] > delay*2-delayTolerance && RCSwitch::timings[i] < delay*2+delayTolerance && RCSwitch::timings[i+1] > delay-delayTolerance && RCSwitch::timings[i+1] < delay+delayTolerance) {
code+=1;
code = code << 1;
} else {
// Failed
i = changeCount;
code = 0;
}
}
code = code >> 1;
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
if (changeCount > 6) { // ignore < 4bit values as there are no devices sending 4bit values => noise
RCSwitch::nReceivedValue = code;
RCSwitch::nReceivedBitlength = changeCount / 2;
RCSwitch::nReceivedDelay = delay;
RCSwitch::nReceivedProtocol = 2;
}
if (code == 0){
return false;
}else if (code != 0){
return true;
}
}
void RCSwitch::handleInterrupt() {
static unsigned int duration;
static unsigned int changeCount;
static unsigned long lastTime;
static unsigned int repeatCount;
long time = micros();
duration = time - lastTime;
if (duration > 5000 && duration > RCSwitch::timings[0] - 200 && duration < RCSwitch::timings[0] + 200) {
repeatCount++;
changeCount--;
if (repeatCount == 2) {
if (receiveProtocol1(changeCount) == false){
if (receiveProtocol2(changeCount) == false){
//failed
}
}
repeatCount = 0;
}
changeCount = 0;
} else if (duration > 5000) {
changeCount = 0;
}
if (changeCount >= RCSWITCH_MAX_CHANGES) {
changeCount = 0;
repeatCount = 0;
}
/**
* Turns a decimal value to its binary representation
*/
char* RCSwitch::dec2binWzerofill(unsigned long Dec, unsigned int bitLength){
for (unsigned int j = 0; j< bitLength; j++) {
if (j >= bitLength - i) {
bin[j] = bin[ 31 + i - (j - (bitLength - i)) ];
}else {
bin[j] = '0';
}